A Weighted Viewport Quality Metric for Omnidirectional Images
Abstract
Thanks to the ability to bring immersive experiences to users, Virtual Reality (VR) technologies have been gaining popularity in recent years. A key component in VR systems is omnidirectional content, which can provide 360-degree views of scenes. However, at a given time, only a portion of the full omnidirectional content, called viewport, is displayed corresponding to the user’s current viewing direction. In this work, we first develop Weighted-Viewport PSNR (W-VPSNR), an objective quality metric for quality assessment of omnidirectional content. The proposed metric takes into account the foveation feature of the human visual system. Then, we build a subjective database consisting of 72 stimuli with spatial varying viewport quality. By using this database, an evaluation of the proposed metric and four conventional metrics is conducted. Experiment results show that the W-VPSNR metric well correlates with the mean opinion scores (MOS) and outperforms the conventional metrics. Also, it is found that the conventional metrics do not perform well for omnidirectional content.
Authors: Pham Ngoc N. and other authors
Read more about the article here
Read more about the author’s publications here