Home News & Events Distinguished Lectures The (Un)known-(Un)knowns of COVID-19 Transmission – An Engineer’s Perspective

The (Un)known-(Un)knowns of COVID-19 Transmission – An Engineer’s Perspective

Speaker: Rajat Mittal, Ph.D.

Professor of Mechanical Engineering at the Johns Hopkins University. Member of the VinUniversity Academic Advisory Board.

Wednesday, Sept 15, 2021, 8 pm Hanoi time

Abstract: COVID-19 spread across the world with a speed and intensity that laid bare the limits in our understanding of the transmission pathways of such respiratory diseases. After much confusion and misinformation, there emerged a consensus that airborne transmission from very small respiratory droplets is the most important route for the spread of COVID-19. Each stage in this transmission pathway is mediated by complex flow phenomena, ranging from air-mucous interaction inside the respiratory tract, turbulence in the exhaled jet/ambient flow, to inhalation and deposition of these aerosols in the lungs. Given the emergence of the Delta-variant and the resurgence of infections in many communities, the importance of communicating infection risk across scientific disciplines, as well as to policy/decision makers, is more important than ever. Inspired by the Drake Equation that provides a framework to estimate the seemingly inestimable probability of advanced extraterrestrial life, we propose a relatively simple model for estimating the risk of airborne transmission of a respiratory infection such as COVID-19. The model incorporates simple ideas from fluid dynamics with known factors involved in airborne transmission and is designed to serve not only as a common basis for scientific inquiry across disciplinary boundaries, but also be understandable by a broad audience outside science and academia.

Bio: Rajat Mittal is Professor of Mechanical Engineering at the Johns Hopkins University (JHU) with a secondary appointment in the School of Medicine. He received the B. Tech. degree from the Indian Institute of Technology at Kanpur in 1989, and the Ph.D. degree in Applied Mechanics from The University of Illinois at Urbana-Champaign, in 1995. His research interests include fluid mechanics, computing, biomedical engineering, biofluids and flow control. He is the recipient of the 1996 Francois Frenkiel Award from the Division of Fluid Dynamics of the American Physical Society, and the 2006 Lewis Moody, and the 2021 Freeman Scholar awards from the American Society of Mechanical Engineers. He is a Fellow of American Society of Mechanical Engineers and the American Physical Society, and an Associate Fellow of the American Institute of Aeronautics and Astronautics. He is associate editor of the Journal of Computational Physics, Frontiers of Computational Physiology and Medicine, and the Journal of Experimental Biology, and on the editorial boards of the International Journal for Numerical Methods in Biomedical Engineering, and Fluids (an MDPI journal).

Recent Events

[Research Seminar] The Role of Academia in Large Scale Urban Planning: Example of the mobility index and NEOM in the KSA | Prof. Alexandre Bayen, UC Berkeley
4 – 5 PM, December 28, 2023

[Research Seminar] The Role of Academia in Large Scale Urban Planning: Example of the mobility index and NEOM in the KSA | Prof. Alexandre Bayen, UC Berkeley

  Seminar Title: The Role of Academia in Large Scale Urban Planning: example of the mobility index and NEOM in the KSA Speaker: Prof. Alexandre Bayen – Associate Provost for Moffett Field Program Development, Liao-Cho Professor of Engineering at UC Berkeley Time: Thursday, December 28, 2023 | 4 – 5 P.M Venue: C401, VinUniversity Registration: […]

Research Seminar: Learning for Safety and Control in Dynamical Systems – Dr. Geir E. Dullerud, University of Illinois
4 PM – 5 PM, December 06, 2023

Research Seminar: Learning for Safety and Control in Dynamical Systems – Dr. Geir E. Dullerud, University of Illinois

About the Seminar In this talk AI-based methods have tremendous potential for impacting the performance of autonomous aerospace and robotic systems. Such systems include drones, ground- and water-based vehicles, and limbed robots for instance. A barrier to the wide deployment of AI-powered methods in such applications is the risk or unpredictability of algorithm performance. In […]

Research Seminar: How Linear Algebra and Optimization Is Useful for Power Industry – Dr. Riadh Zorgati
10.30 AM – 11.30 AM, November 28, 2023

Research Seminar: How Linear Algebra and Optimization Is Useful for Power Industry – Dr. Riadh Zorgati

 About the Seminar In this talk, we illustrate how linear algebra and optimization, with continuous or binary variables, is useful for power industry, for example for improving maintenance of power plants or for energy management. Optimization under constraints is a key approach for energy management where we aim at minimizing costs of production while respecting […]